

TYPES OF ELECTRONIC DEVICES

GLE 5 Electronic Staircase Lighting Timer

GI 24...230 V AC/DC Multifunctional timer

U1NC Single-phase Voltage Monitoring Relay

UAS-0 Three-phase Voltage Monitoring Relay in fourwire systems

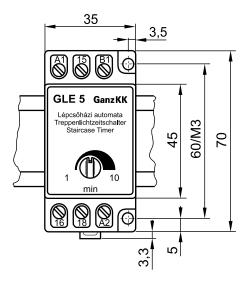
UASNC Three-phase Voltage Monitoring Relay

UASNCt Three-phase Voltage Monitoring Relay with delay

TABLE OF CONTENTS

Electronic Staircase Lighting Timer GLE 5	2
Multifunctional Timer GI	4
	•••••
Voltage Monitoring Relay U1NC	6
	•••••
Voltage Monitoring Relay U	8
	•••••
Voltage Monitoring Relay UAS-0	10
	•••••
Overheat Protection Relay VH	12
	•••••
Residual Current Circuit Breakers GFI	14
	•••••
Light depended relay GFK 3	16

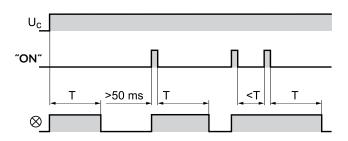
ELECTRONIC STAIRCASE LIGHTING TIMER GLE 5

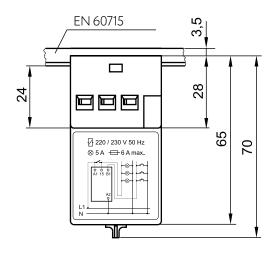


The GLE 5 device is destined supply voltage to the lighting circuits on pushing the "ON" buttons mounted at each floor and to turn the lighting off automatically following the adjusted delay time.

Powering the lighting circuit causes a built-in relay to be activated without the "ON" button having to be pushed. This relay drops out elapsing of the "T" time adjusted on a scale. The whole cycle is repeated whenever the "ON" button is pushed.

Standard lighting switch L1 — 6 A max. Q Q δ A1 15 B1 ON ON ON ו ו ו_____ GLE 5 Α2 ò Ν


Dimensions



Pushing in the button while the "T" time is running causes the preset time delay and restarted. Getting the "ON" button stuck in the pushed position causes no harm whatsoever to the device for reasons of the relay being just permanently energized.

One automatic staircase lighting switch is capable of activating altogether 10 pushbuttons with glow tubes and/or any number of pushbuttons without them. Permanent staircase lighting can be obtained by closing a switch connected across the terminals A1-15.

Using consumers with a rating in excess of that specified for the relay requires an auxiliary switch to be interconnected.

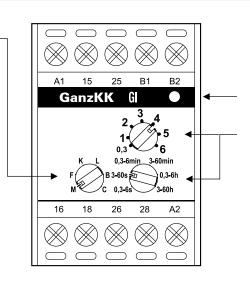
GANZ Switchgear and Appliance Manufacturing Ltd.

ELECTRONIC STAIRCASE LIGHTING TIMER GLE 5

Technical data

Rated control circuit voltage (U _c)		230 V+10 %, -15 %, 50 Hz
Power consumption		5 VA max.
Range of delay t	ime	1 10 min ±20%
Repetition accu	racy at rated voltage	±1 %
Ambient tempe	rature range	-5 +40 °C
Rated insulation	voltage	250 V 50 Hz
Test voltage		1,5 kV 50 Hz
Degree of prote	ction	IP 20
Mounting positi	on	any
	type	1 make
	rated operational voltage	230 V 50 Hz
Built-in relay	rated thermal current	16 A
Dutt-Infetay	switching power (with 40 or 60 W bulbs)	1200 W
	rated operating current (230 V, AC-15)	2 A
	electric endurance	100 000 c
Dimensions		35 x 70 x 70 mm
Mounting		2 pcs M3 screws or on a 35 mm rail
Type of electric connection		screw-clamp
Cross-section of connectable wires		0,75 1,5 mm ²
Mass		about 0,3 kg
Relevant standa	rd	EN 60669

MULTIFUNCTIONAL TIMER GI



The GI type muntifunctional timers are interchangeable with following types: GIM, GIF, GIK, GIL, GIB. The control voltage may be 230 VAC or 24...230 V AC/DC as the type-sign contains values of the control voltage:

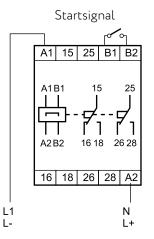
- GI 230 V AC or
- GI 24 ... 230 V AC/DC

The function characteristic (operation mode) is changeable in any time, the timer operates always by characteristic existing at the moment of the start:

- M delay in making (GIM)
- F delay in breaking (GIF)
- K delay in switch-off (GIK)
- L stepping (GIL)
- B flickering starting by make of relay (GIB)
- C flickering starting by broken relay

Indicating of make position of built-in relay

The delay times and time ranges are changeable during the operation (timing) too, the timer makes or breaks always at the last adjusted value.


Operation

The indication of the connecting terminals is according to the method used in Europe:

- phase conductor of the network or its negative wire is connected to A1;
- neutral conductor of the network or its positive wire is connected to A2;
- starting is operated on connecting terminals B1, B2;
- the output contacts of the relay are connected to 16, 15, 18, and 26, 25, 28.

A2 and B2 connecting terminals are connected within the device, therefore it is practical to connect the neutral wire to A2, so that phase voltage would not appear on B2 as well.

The prevailing rectified rated control supply voltage appears on the connecting terminal B1, that is why the starting contact has to be capable to switch the U_c voltage safely, and must have at least U_c insulation voltage.

Rated control voltage

The flowing current on starting contact is roughly 0,3 mA.

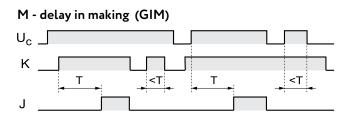
Starting can be made in two ways:

Starting by contacts: make short B1 and B2 contacts at least 0,1 s after connecting the control voltage. Time needed to restart after the timing is min. 20 ms.

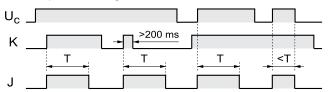
Power starting: having made B1 and B2 short, connect the control voltage. This metod can be used with characteristics GIM, GIF and GIB only. 50 ms is added to the delay time. Time needed to restart after the timing is min. 100 ms.

If the voltage fails more than 100 ms, the timers will set to their basic condition, and will operate as power-started timers when the voltage is back (at the made starting contacts).

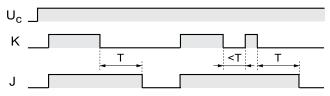
If the voltage fails for less than 50 ms, the timing will be continued after the voltage is back.


Connecting

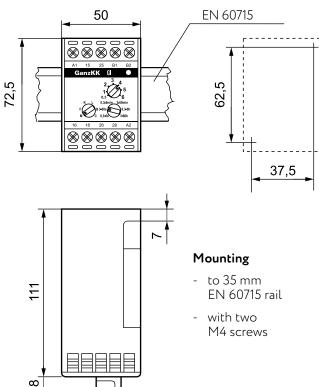
Connect with one or two 1,5 ... 2,5 mm^2 solid or flexible wire(s) to the screw clamps.

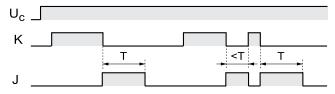


MULTIFUNCTIONAL TIMER GI

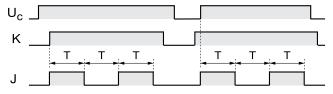

Characteristics

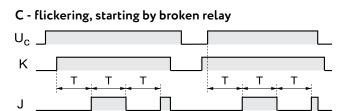
F - delay in breaking (GIF)


K - delay in switch-off (GIK)


Technical data

Rated contr	GI 230 V AC	230 V AC		
voltage (U _c)	GI 24230 V AC/D	24230 V AC/DC		
Allowed tol	erance of U_c	-15+10 %		
Repeting ac	curacy at U _c	± 25 ms; ±1 %		
Temperature	e error	0,2% / °C		
Voltage erro	r	0,1% / %∆U _c		
Scale error		±5 %		
Time neede	d to restart	min. 100 ms		
Ambient ter	nperature	-5 °C +50 °C		
Power consu	Imption	max. 3 W or 4 VA		
Rated insula	tion voltage	250 V, 50 Hz		
Degree of p	rotection	IP 20		
Mass		about 0,3 kg		
	system	2 change-over		
	thermal current	8 A		
Relay contact	operational current	2 A (230 V, AC-15)		
	electrical endurance	2x10 ⁵ c		
	mechanical endurance	e 5x10 ⁶ c		
Relevant sta	ndard	EN 61812-1		


Dimensions

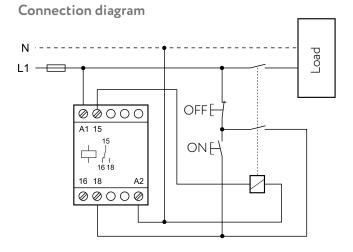


L - stepping (GIL)

B - flickering, starting by make of relay (GIB)

VOLTAGE MONITORING RELAY U1NC

The U1NC single-phase voltage relay is designed to sensing of increase or decrease of 230 V AC network voltage.


Application, functions

In case of normal (failureless) network the built-in relay is made position indicated by illumination of a green LED on the front plate.

If the controlled network voltage fails under the permitted value set by knob (4) or exceeds the value set by knob, the built-in relay breaks and the LEDs

besides the knobs indicate the cause of failure. In order to eliminate malfunction by voltage transients, the operation of the relay is delayed. Delay time is 0,1 ...2 s depending on the extent of voltage deviation.

Approx. 2 % hysteresis is between switch-off value and value of switch-on back.

Connecting

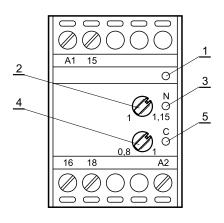
Connect with one or two 1,5 ... 2,5 $\rm mm^2$ solid or flexible wire(s) to the screw clamps.

Preset switching levels

C - voltage decrease

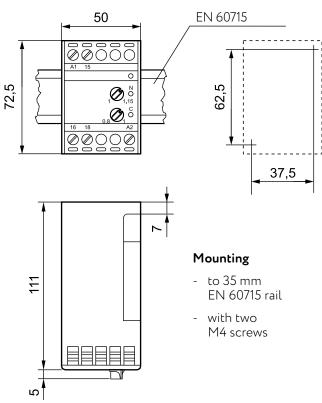
Operating diagram

J - output contacts



VOLTAGE MONITORING RELAY U1NC

Techical data


Rated insulation voltage			400 V AC	
Rated control voltage (U_c)			230 V AC	
Range of operational vo	ge of operational voltage		80 V AC 290 V AC	
Voltage increase at brea	ak		(1 x U _c) -3 % (1,15 x U _c) +3 %	
Voltage decrease at bre	ak		(1 x U _c) +3 % (0,8 x U _c) -3 %	
Ambient temperature ra	ange		-5 +50 °C	
Test voltage		2500 V		
Degree of protection		IP 20		
system		1 change over		
	thermal current		8 A	
Relay contact 400 V, AC-15		400 V, AC-15	0,6 A	
operational current		230 V, AC-15	1 A	
electrical endurance		10 ⁴ c		
Relevant standard		EN 61010		

Frontplate

- 1 green LED indicating made position of relay
- 2 knob to set the voltage increase at break
- 3 red LED indicating failure of voltage increase
- 4 knob to set the voltage decrease at break
- 5 red LED indicating failure voltage decrease

Dimensions

VOLTAGE MONITORING RELAY U...

The U type three-phase voltage monitors are suitable for complex protection of three-phase loads (mainly motors) against phase-asymmetry and faulty phase-sequence of line voltages as well as symmetrical increase or decrease of line voltage. Their operation does not require neutral conductor. The operating value can be set by turn-knob. The breaking occurs with delay, for this reason the monitor relay does not sensitive to voltage transients.

In the type-mark of voltage monitor the letter U is followed by the letter-combination referring to the kind of protection:

- A phase asymmetry
- S phase sequence
- N line voltage increase
- C line voltage decrease

15 combinations of the four kind of protection are available:

UA	UAS	UASN	UASNC
US	UAN	UASC	
UN	UAC	UANC	
UC	USN	USNC	
	USC		
	UNC		

The delay time is not adjustable at above mentioned versions. The delay time of breaking is adjustable by turn-knob in case of types: UAt, UASt and UASNCt.

Application

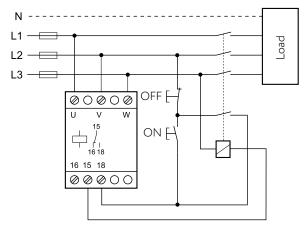
Protection against line voltage decrease does not protect against phase-failure. This task can be performed by phase asymmetry protection.

If the U relay performs phase sequence protection, care must be taken when connecting phase wires so that the green LED is on at right phase sequence. In case of altering the phase sequence the output contact immediately opens. If the phase sequence is wrong when the relay turned on, the output contact does not make.

Asymmetry means the maximum difference of the line voltages related to the highest line voltage, expressed in percent.

Operation

In case of normal supply voltage the output contact is made, the green LED illuminates only on the front plate.


In case of **types** at which the **delay time does not adjustable**, the value of delay is between 0,1 s and 5 s. If the deviation is big (phase-failure) then the breaking occurs more quickly.

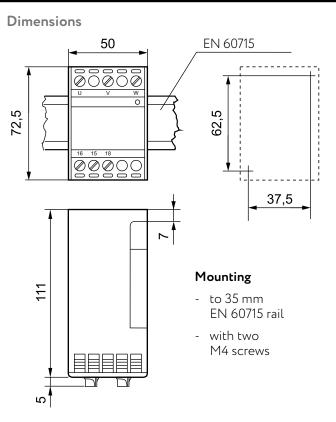
One-one red LED corresponds to four protection modes. If case of occurence of one or more failure, the adequate red LED begins to flash, the flash the green LED stops and the built-in relay breaks.

In case of **types** at which the **delay time is adjustable**:

- if one failures occurs then the adequate red LED is flickering inside the delay time,
- if the failure breaks inside the delay time then the failureless situation will be re-established,
- if the failure does not break inside the adjusted delay time, then the flickering of the adequate red LED changes to continuous red light, the built-in relay breaks and the illumination of two-coloured LED changes from green to red light.

Connection diagram

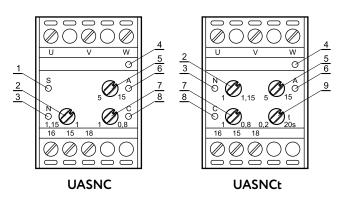
Connecting


Connect with one or two 1,5...2,5 $\rm mm^2$ solid or flexible wire(s) to the screw-clamps.


VOLTAGE MONITORING RELAY U...

Technical data

Rated insulation voltage		
Rated control voltage (U_c)		
Asymmet		
Voltage ir		
Voltage decrease at turn-off		
Delay of turn off (UAt, UASt, UASNCt)		
Temperature range		
Test volta		
Degree o		
Relay contact operational		
contact		
Asymmet /oltage ir /oltage d Delay of 1 Femperat Fest volta		


Operating diagrams

1

2

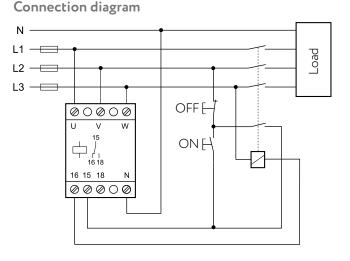
Frontplate

- red LED indicating phase sequence
- knob to set turn-off at voltage increase
- 3 red LED indicating failure of voltage increase
- 4 green LED, indicating closed output contact (U...) two coulured LED indicating position of output contact
- 5 knob to set turn-off at asymmetry
- 6 red LED indicating failure of asymmetry
- 7 knob to set turn-off at voltage decrease
- 8 red LED indicating failure of voltage decrease
- 9 knob to set delay of turn-off

VOLTAGE MONITORING RELAY UAS-0

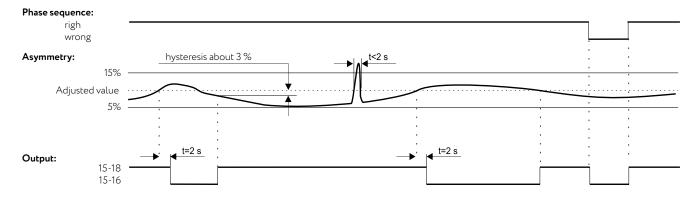
The UAS-0 type three-phase voltage monitor is suitable for protection of three-phase loads (mainly motors) in fourwire systems against phase-asymmetry and faulty phasesequence of line voltage.

The monitor relay operates reliably too in case of distorted sinusoidal line voltage, occurred by inverters or switching power supply units.


The allowed value of the phase-asymmetry is adjustable between 5...15 % by knob which can be found on the frontplate. The limit-values on the two end-position of the knob are informative only. The required correct value should be adjusted by measurement at starting up of the relay.

Operation

In case of normal supply voltage the output contact of the built-in relay is made position and the green LED illuminates only on the black stripe of the frontplate, if the line voltage is connected with right phase sequence.

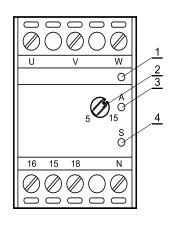

In case of connecting with incorrect phase sequence the output contact does not make, the green LED does not illuminate. The faulty of phase-sequence is indicated by red LED, which can be found under the letter "S".

If the value of phase-asymmetry greater than value adjusted by knob on the frontplate, the red LED (under the letter "A") lights up indicating the asymmetry-faulty, after that the output contact breaks with 2 s delay and the green LED is off. If the faulty breaks, the relay comes back automatically to the basic position. If the faulty stops during the delay time, the output contact does not break.

Connecting

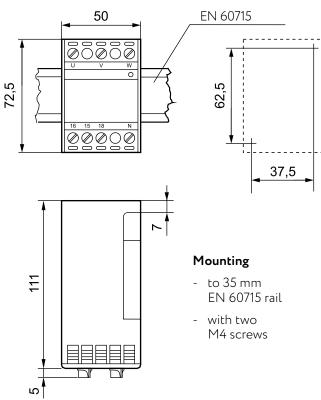
Connect with one or two 1,5 ... 2,5 mm^2 solid or flexible wire(s) to the screw-clamps.

Operating diagrams



VOLTAGE MONITORING RELAY UAS-0

Technical data


Rated control voltage (U _c)		3 x 230/400 V 50 Hz +1520 %			
Rated insulation voltage		400 V AC			
Asymmetry at break	symmetry at break		nmetry at break		515 %
Delay of break			about 2 s		
Power consumption			4 VA max.		
Temperature range			-5 +50 °C		
Test voltage		2500 V			
Degree of protection			IP 20		
system		1 change-over			
	thermal current		8 A		
Relay contact			0,6 A		
operational current 230 V, AC-1		230 V, AC-15	1 A		
	electrical endurance		10 ⁴ c		
Relevant standard		EN 61010			

Frontplate

- 1 green LED indicating made position of relay
- 2 knob to set asymmetry at break
- 3 red LED indicating faulty of asymmetry
- 4 red LED indicating phase sequence faulty

Dimensions

OVERHEAT PROTECTION RELAY VH

The VH relay is intended to protect industrial electric equipments (first of all motors, but also electric furnaces, welding, X-ray equipments, etc.) against harmful overheating.

Principle of operation

The VH relay is activated by the change of the resistance of the external sensor, a PTC (positive thermo-coefficient) thermistor at nominal temperature. The characteristic of the PTC allows series connection of several PTC's of different nominal temperature without loss of operating precision.

Application

PTC thermistors are mounted to the relevant parts of the equipments to be protected (in case of motors into each phase of the stator windings). The output of the PTC is connected to VH relay. At nominal temperature the output contact of relay breaks and turns off the contactor of the protected equipment, the front-panel LED is off.

As soon as the PTC cooled down 2 ... 5 °C, the output contact makes again and the protected equipment is automatically switched on.

If the VH relay is applied according to connection diagram, the output contact is closed after cooling down but the contactor (and thus the remains in off state. Restart of contactor (and thus the protected equipment) takes place by pushing of push-button ON. The VH relay must be placed as close to the protected equipment as possible. Cross-section of the connecting wire is min. 0,75 mm², max. resistance is 2,5 Ω . Shielded and possibly the shortest wires are suggested, if protection against magnetic or electric interference is necessary. The connecting wires must be placed as far from high-current conductors as possible.

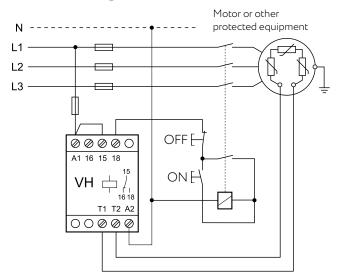
Mounting of PTC thermistors

Maximum allowed initial resistance of applicable PTC thermistors is 800 Ω . Thermal resistance between thermistor and protected equipment must be minimized. Body of PTC thermistors must not be additionally isolated. Outputs of the thermistor and the connecting wires must have equal insulation properties to those of protected equipment.

Motors are normally supplied with thermistors built into the windings of the motor. Assembling thermistors into the motor needs special skill and therefore can only be done by manufacturer of the motor or by specialised service.

Connecting

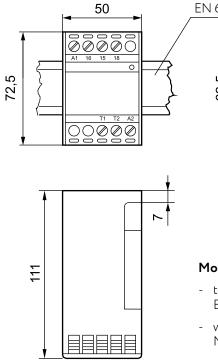
Connect with one or two 0,75...2,5 mm^2 solid or flexible wire(s) to the screw-fixing clamps.

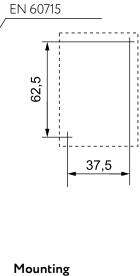


OVERHEAT PROTECTION RELAY VH

Technical data

Rated insulation voltage			400 V AC		
Rated control voltage (U _c)			24; 42; 110; 230; 400 V AC +1015 %		
	initial resistance		max. 1300 Ω		
Connectable thermistors	operational resistanc	e	2,8 ±0,3 kΩ		
	re-switching resistance	ce	1,5 .±0,15 kΩ		
Ambient temperature range	in operation		-5 +40 °C		
Ambient temperature range	in storage		-25 +55 °C		
Testing voltage	2		2500 V		
Degree of protection	Degree of protection		IP 20		
	system		1 change over		
	thermal current		8 A		
Relay contact		24 V, AC-15	1,6 A		
Relay contact	operational current	230 V, AC-15	1 A		
		400 V, AC-15	0,6 A		
	electrical endurance		10 ⁴ c		
Relevant standard		EN 61010, EN 60255-6			


Connection diagram



Attention!

T1 and T2 terminals of VH relay are under voltage!

- to 35 mm EN 60715 rail
- with two M4 screws

RESIDUAL CURRENT CIRCUIT BREAKERS GFI

The residual current circuit breaker (RCCB) is the most effective device for protection of the human life against electric shock. It breaks the electric circuit within a short time (some tenths of second), if the fault (residual) current exceeds the rated fault current of the device. Fault current may be occur in case of short-circuit, infiltration, or in case of touching by human's body.

Residual current circuit breakers (RCCB):

- make protective earthing less expensive as earth resistance, related to a given touch voltage, can be much higher;
- are most effective to in prevent accidents of electric **shock** since the current, flowing through the person accidentally touching the phase line, is disconnected in short time;
- play an important role in **preventing fires** resulting from deteriorated insulation as the earth-shorted equipment is disconnected at the value of residual current.

The two- and four-pole RCCBs operate on electromagnetic principle, they have not any electronic system.

The "AC" type RCCBs sense the alternating residual current only, the type-sign shows AC letters. The "A" type RCCBs sense the alternating and the pulsating direct residual current too (the type-sign does not contain any marking) and their functioning is not disturbed by controlling devices containing semiconductors.

Neither the two-, nor the four-pole design contains built-in short-circuit and overload protection, so these protective devices have to be fitted additionally.

The short-circuit and overload-protective devices that are to be fitted on line with the residual current circuit breaker in case of different rated currents and presumed value of short circuit currents are:

63 A: gG80 | 40 A: gG63 | 25 A: gG63 | 16 A: gG63

The allowed earth resistance maximums for the different rated residual current release in case of 25 V and 50 V touch voltage are:

I _{∆n} [mA]	R_m [Ω] at 25 V	R _m [Ω] at 50 V
10	2500	5000
30	835	1670
100	250	500
300	83	167
500	50	100

Ordering information	GFI <u>025</u>	. <u>4. 100 AC</u>		
Rated current	Number of poles	Rated residual current	Kind of current	
016*: 16A	2: two poles	010**: 10 mA	AC: alternating	
025: 25 A	4: four poles 030: 30 mA without sign: alter			
040: 40 A		100: 100 mA	and pulsating direct	
063: 63 A		300: 300 mA	current (type A)	
		500: 500 mA		
* At two-pole 2×	$^{\circ\circ}$ At two-pole 2× I _e = 16 A and 25 A executions only			

important premises (e.g. flats, bathrooms, kitchens,

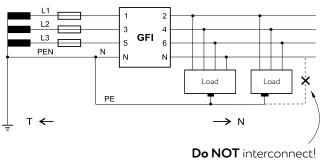
etc.) from point of view of electric shock.

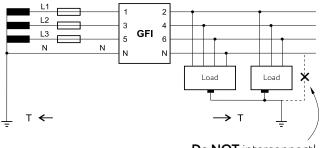
The installation of the RCCBs should be done by an expert only. When installing, specific attention must be paid, because the following connection should be made:

- in and out neutral conductors (N) with each other, or
- on the load side, the earth wire and the neutral conductor with each other.
- The devices not need maintenance, only the functionning must be checked once a month by pushing

To choose the appropriate residual current circuit breaker, it must be considered that for the effective shockprotection the device having the higher sensitivity is the better, but the application is restricted by the fact that the capacitive and leakage currents in larger networks can exceed the residual (fault)-current release limit and this could lead to an unnecessary release.

To solve the problems:

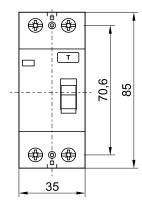

- The fitting of a RCCB with sensitivity 300 mA or 500 mA at the feeding point of a larger network,
- The fitting of a RCCB with sensitivity 30 mA of the

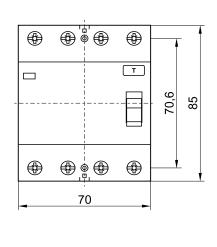


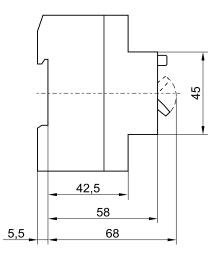
the **TEST** button.

RESIDUAL CURRENT CIRCUIT BREAKERS GFI

Wiring diagram




Do NOT interconnect!


Technical data

Number of poles					2			4	
Rated current	l _n	А	16	25	40	63	25	40	63
			0,01	0,01					
			0,03	0,03	0,03	0,03	0,03	0,03	0,03
Rated residual operating (fault) current	l∆n	А	0,1	0,1	0,1	0,1	0,1	0,1	0,1
			0,3	0,3	0,3	0,3	0,3	0,3	0,3
				0,5	0,5	0,5	0,5	0,5	0,5
Rated voltage	Un	\vee		2	30			230/40	0
Rated frequency		Hz				50/60			
Rated short-circuit capacity I_m	1 = 1.	Λ		5	00			630	
Rated residual capacity $I_{\Delta m}$	Im− I∆m	$I_m = I_{\Delta m}$ A		500			030		
Allowed value of fuse	l _n	gG (A)	63	63	63	80	63	63	80
Rated conditional short-circuit current	l _{cn}		10 000 A						
Degree of protection			IP 20, after building in enclosure IP 40						
Mounting position			any						
Ambient temperature			-25°C	+40°C	-				
Mass			230 g				390 g		
Wiring capacity			1 25 mm ²						
Release time			at 1 x $I_{\Delta n}$: <0,2 s; at 5 x $I_{\Delta n}$: <0,04 s						
Electrical endurance			>10 000 c						
Relevant standard			EN 61008						

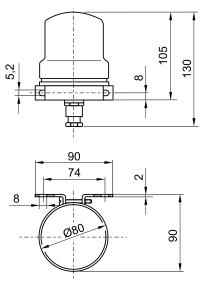
Dimensions

LIGHT DEPENDED RELAY GFK 3

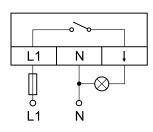
Dimming switches type GFK 3 are designed to automatically turn on the various lights in the evening and turn them off at sunrise.

In daylight, the relay inside the device is deenergized. As soon as the light intensity falls to below the preset value, it is energized and a circuit is made. The cycle taking place when the light intensity increases is reversed. The circuit is made with a certain delay in order to prevent any unnecessary disconnections due to short-term increases in the light intensity (such as f. in. caused by lightning.)

The device comes preset to the desired activating threshold (to be specified when ordering), which is somewhere between 5 and 40 lux. Unless otherwise ordered, it leaves the factory preset to between 10 and 25 lux, a widely accepted rule-of-thumb value.


When installing, should be mounted to a vertical surface, with the covering upwards, using 2 pcs. M5 screws.

When mounting, it should be made sure that enough light falls onto the device, and that other light sources possibly disturb with the night-time operation are avoided.


When connecting it should be removed the covering and connected the three-wire cable to the terminal block by reason of wiring diagram given on the data plate. Recommended wire: A05VV-F 3x1 mm², blue, brown, black.

It is a good practice to clean the covering of the dimming switch at regular intervals in function of the climatic conditions in order to prevent reduced transparency.

Dimensions

Wiring diagram

Technical data

Rated insulation vo	250 V		
Rated control circ	230V 50 Hz +10%,-15 %		
Power consumption	on	5 VA max.	
Activating thresho	old	10 25 lx	
Deactivating three	shold	1.3 1.8 times the actual actuating threshold	
Operate delay on in light intensity	abrupt changes	2 s min.	
Switching frequer	псу	120 c/h max.	
Degree of protect	ion	IP 54	
Shock protection	method	by double insulation	
Operating temper	rature range	-20 +50 °C	
Wiring capacity		0,5 1,5 mm ²	
Operating positio	n	with the covering pointing upwards	
Mass		0,4 kg	
	Contact details		
Contact		1 make (closed in darkness)	
Rated operational	voltage	230 V, 50 Hz	
Rated thermal cur	rent	16 A	
Allowable loading current	in the utilization category AC-15	1,6 A and 10 ⁵ cycles	
and electric endurance	with 60 W bulbs max.	900 W and 2x10 ⁴ cycles	
Recommended M	6 A B or C		
Relevant standard	EN 60669		

GFI 025 2 030 Residual Current Circuit Breakers

GFI - 063 4 030 Residual Current Circuit Breakers

VH Overheat Protection relay

GFK 3 Light depended relay

